- 做好客户管理需要对客户哪些数据分析?
- 资讯类型:数据政策 / 发布时间:2023-11-08 09:38:41 / 浏览:0 次 /
一、做好客户管理需要对客户哪些数据分析?
如何做好客户管理工作需要满足一下几点要求:
1. 整理好客户信息并做好客户的售后服务和投诉问题的处理,根据不同客户的交易状态和重要性划分不同的客户,根据不同客户信息制定不同的处理方案。
2. 制定以客户为出发点的客户管理制度,明确客户部门的工作范围和定位,制定战略与目标,促进销售工作的进行和客户关系的优化等工作。
3. 建立反应客户基础信息和属性的档案和销售数据。要详细记录客户购买时的消费心理和需求,写明客户的偏好和基本背景情况。以便销售部门进行呵护的回访和跟进。
客户分级是便于开展客户关系管理工作的一种手段,不应该对客户进行差别对待,而是根据客户分级信息建立合理的客户管理流程和制度,为了更好的处理与客户之间的关系,不应该根据表面上的信息来断定客户的价值,应该积极发现客户的潜在价值。但是企业也不应该将资源和经理浪费在差的客户关系上,所以这就需要做好客户信息的全面分析,剔除差的客户信息,保留好的客户信息,从而发展自己的客户群体培养长期客户。
如何做好客户管理需要我们时刻掌握客户及市场的需求,并且做好日常的推送工作和营销活动,引导客户与企业的沟通,从而发展长期关系,而在建立客户关系之后则需要经常的维持和管理避免客户资源的流失。
二、客户分析的起点是什么?
客户分析起点就是根据各种关于客户的信息和数据来了解客户需要,分析客户特征,评估客户价值,从而为客户制订相应的营销策略与资源配置计划。
三、数据分析是什么?怎么做数据分析?
数据分析还是不错的职业发展方向的
1)简单点评:
数据分析师以待遇优厚和地位尊崇而闻名国际,被视为我国21世纪的黄金职业。目前,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺。领英报告表明,数据分析人才的供给指数最低,仅为0.05,处于极度紧缺状态,是最热门职业之一。
数据分析师是全科型破题人才,具备数据认知能力、数据处理能力、数据化思维能力、数据呈现能力、数据决策能力、计算机及数据分析信息技术、企业实战能力,通过大数据思维从宏观规划、微观/细分市场分析、方案执行和策略部署等诸多方面为企业带来价值。而AI、BI仅是全过程中的某一部分技能。
2) 数据分析师亮点:
1. 人才缺口非常大
大数据/AI时代,只要公司有业务决策需求,都离不开数据分析。
猎聘2019年大数据人才就业趋势报告显示:中国大数据人才缺口高达150万,其中绝大部分是数据分析岗。数据化强国战略促使数据分析职位需求量井喷,据IDC与数联寻英等机构统计2018年比2014年增加4倍,未来三至五年人才缺口将达150万。而目前的中国大数据人才仅有30万左右!至2025年中国大数据人才缺口达到200万。
2. 简单易学发展好
相比大数据工程师、AI工程师而言,数据分析学习难度要低,从数据分析入行未来向大数据、AI发展也比较容易。
3. 就业不愁薪资高
51job等主流招聘网站数据分析岗位是Java三到五倍左右,就业不愁。以大数据思维为企业提供数据化解决方案的人才紧缺。2018年行业起薪突破20万/年,高出行业平均薪酬水平30%以上!因为稀缺,所以高薪,初入职场零经验的应届毕业生拿到10K的薪资几乎已成常态,而20k-30k的薪资占比已超过50%。
4. 行业适应普遍强
据分析是绝大部分岗位都需要的职场必备技能。所有行业都需要数据分析技能,金融、电商类数据分析人员是需求最大的行业。
5. 职业寿命非常长
数据分析师是不会失业、越老越香的少数职业之一。
马云曾表示:“未来三十年数据将取代石油,成为最强大的能源。”目前近50%的岗位需要具备数据分析能力,像互联网公司的产品经理、新媒体运营、活动策划、用户研究等岗位也给出“具备数据分析能力”这样的招聘条件。掌握数据分析能力=多50%岗位机会!
6.高校专业适应广
计算机、信息、数学、统计、电商、经济学、财务、统计、投资、金融和企业管理等专业的在校学生以及应届毕业生都可以从事数据分析职业。
2) 行业定位与应用:
1.政府、事业机构:
负责项目审核、审批和招商引资、项目评估决策等工作的政府机构领导者及相关从业者。
2.金融机构: 金融机构、管理咨询公司中风险投资、金融产品研发、信贷等相关项目管理的工作人员。
3.企业单位: 招商引资、扩大再生产、财务审计、市场分析、数据挖掘等相关岗位的工作人员
4.事务所: 数据分析师事务所、会计师事务所、资产评估事务所、税务师事务所及律师事务所人员
5.高校、职业技术学院: 计算机、数学统计、经济学、财务、统计、投资、金融和管理等专业的学生。
6.其他: 创业以及希望在投资金融、资本运营、房地产和企业管理行业发展的有志之士。
3) 数据分析师工作内容
1. 通过数据分析支持产品改进及新模式的探索;
2. 构建数据评估体系,构建业务数据分析体系,帮助确定各项业务数据指标;
3. 负责用户行为数据分析,通过监控及分析,推动产品改进,运营调整;
4 .负责构建用户数据模型,挖掘用户属性及用户喜好等需求,为个性化产品推荐提供支持;
5. 构建产品/运营/活动用户行为评估体系,通过数据分析对产品/运营/市场提出建议;
6. 通过海量数据的挖掘和分析,形成报告,汇报给决策层,支持战略规划 。
4) 数据分析职业发展方向
6)薪酬分析:
四、客户特征分析?
1)客户行为习惯分析:根据客户购买记录识别客户的价值,主要用于根据价值来对客户进行分类。
2)客户产品意见分析:根据不同的客户对各种产品所提出的各种意见,以及当各种新产品或服务推出时的不同态度来确定客户对新事物的接受程度。
客户忠诚分析
客户忠诚是基于对企业的信任度、来往频率、服务效果、满意程度以及继续接受同一企业服务可能性的综合评估值,可根据具体的指标进行量化。保持老客户要比寻求新客户更加经济,保持与客户之间的不断沟通、长期联系、维持和增强消费者的感情纽带,是企业间新的竞争手段。而且巩固这种客户忠诚度的竞争具有隐蔽性,竞争者看不到任何策略变化。
五、客户画像分析?
用户画像是通过对用户各类特征进行标识,通过标识给用户贴上各类标签,再通过标签把用户分为不同的群体,以便对不同的群体分别进行产品/运营运作。
二、标签都有哪些?
这里呢我们把标签分为四大类:
第一类:基础属性
像年龄、性别、生日、星座、教育、身高、收入、职业等。
第二类:社会关系
婚姻、有无女孩、有无男孩、家里是否有老人、性取向等。
第三类:行为特征
行为特征又分为两块儿:
基本行为:注册时间、来源渠道、最近一次活跃的时间、最近一次支付的时间。
业务行为:是否买过特惠商品、是否曾获优秀学员,这些标识都会对产品的后期运营有所帮助。
第四类:业务相关
这一类跟其他类不太一样,就像第三类中的业务行为,它是通过业务行为产生出来的特征,而业务相关呢,它是积累了其他的业务不会去记录的一些数据,比如运动健身类的产品。
它会涉及到:胖瘦高矮、体脂率、BMI、在练胸或者练臀、日均10000步、收藏了多少份健身计划等等。
六、外汇数据分析是什么意?外汇数据分析是什么意?
基本面分析,先了解一些重要数据对市场的影响,例如利率决议,非农数据,GDP数据,CPI数据和各国就业数据和贸易数据,还有制造业数据等等。 然后是一些重要经济焦点,如美国欧元区和英国的货币政策,特别是美国的量化宽松政策,还有欧债危机的进展,然后是全球股市和油价的波动情况。 然后是各个货币本国的特点,如澳大利亚(澳元)对中国经济(经济数据)的敏感,瑞郎对瑞士央行干预的敏感(欧元/瑞郎设置下限等),伦敦金对美国货币政策的敏感等等。。。。。。 还有很多需要慢慢积累。 然后是技术分析,均线,指标,波浪,黄金分割等等的一些涉猎。 然后是交易理念或交易方法的基本认识和探索,如止损、止盈,套利和套息,对冲交易,建立交易系统等等。
七、数据分析的数据可以是什么数据?
1.交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化买卖数据,这样就能够对更广泛的买卖数据类型进行剖析,不仅仅包含POS或电子商务购物数据,还包含行为买卖数据,例如Web服务器记录的互联网点击流数据日志。
2.人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及经过博客、维基,尤其是交际媒体产生的数据流。这些数据为运用文本剖析功用进行剖析供给了丰富的数据源泉。
3.移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越遍及。这些移动设备上的App都能够追踪和交流很多事情,从App内的买卖数据(如搜索产品的记录事情)到个人信息材料或状况陈述事情(如地址改变即陈述一个新的地理编码)。
4.机器和传感器数据(MACHINE AND SENSOR DATA)
这包含功用设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备能够配置为与互联网络中的其他节点通信,还能够自意向中央服务器传输数据,这样就能够对数据进行剖析。
八、经营数据分析需要分析哪些数据?
1、引流
通过分析PV、UV、访问次数、平均访问深度、跳出率等数据来衡量流量质量优劣。
目的是保证流量的稳定性,并通过调整,尝试提高流量。
2、转化
完成引流工作后,下一步需要考虑转化,这中间需要经历浏览页面—注册成为用户—登陆—添加购物车—下单—付款—完成交易。
每一个环节中都会有用户流失,提高各个环节的转化率是这一块工作的最核心——转化率的提升,意味着更低的成本,更高的利润。
3、留存
通过各个渠道或者活动把用户吸引过来,但是过一段时间就会有用户流失走掉,当然也会有一部分用户留下来,留下来这部分用户就叫做留存用户。
九、生产数据分析主要分析哪些数据?
数据分析按作用,一般可以分为现状分析、原因分析和预测分析三大类,生产数据分析主要涉及现状分析和原因分析。
1、生产数据现状分析。
生产数据现状分析常见的分析方法有两类,对比分析和平均分析。
对比分析是生产数据分析用得最多的分析方法之一。
对比分析又可以从横向和纵向两个方面进行。横向对比分析,又称静态对比分析,主要有和目标对比,和其他部门对比,和其他地区对比,和其他行业对比等等。比如,生产投入产出达标率就是一种典型的对比分析,再比如,A车间和B车间的人均产能比较,也是对比分析。
纵向对比分析,又称动态对比分析,主要有和历史同期对比的同比,和上一周期对比的环比。
平均分析,也就是求平均,是最基础的数据分析方法,和对比分析一样,也是生产数据分析应用最多的分析方法之一。
2、生产数据原因分析。
原因分析,顾名思义,就是经过数据分析,找到生产现状发生的原因。
生产原因分析的分析方法也很多,主要包括:分组分类分析、结构分析、交叉分析、杜邦分析、漏斗图分析和矩阵关联分析。
十、数据分析是什么工作?
配合公司提取需要的数据,对多种数据源进行组合分析、挖掘和建模,提交有效的分析报告;
2. 主动发现值得关注的数据现象并向相关部门汇报;
3. 对各类数据进行验证核对,确保数据的准确性、有效性;
4. 协调相关部门实施关键数据的记录,进行日常数据的汇总保存;
5. 各类业务周期性报表制作、专项报表制作