- 数据分析师前景与弊端?
- 资讯类型:数据政策 / 发布时间:2024-01-01 03:10:09 / 浏览:0 次 /
一、数据分析师前景与弊端?
数据分析通常有两种出路:对算法做深入的研究然后去做数据挖掘、对业务有比较深刻的理解然后转去做业务。除此之外,无其他出路。
而说实话,我不看好数据分析本身这个岗位。为什么不看好?首先我们对数据分析的工作做个拆解。大部分的数据分析有50%的时间在取数,还有40%的时间在跟产品经理沟通:做AB实验以及做做效果回归,最后还有10%的时间在做探索性分析。现在在担任数据分析岗的,可以跳出来说一说是不是。
可是上面这些工作其实大多是可以替代的,机械性的工作。看写SQL取数这个活就是个脏活、累活,会的人都能取,雇一个干了五年的数据分析跟一个刚毕业的数据分析写SQL基本没啥区别。无非就是开始可能没法做到100%准确性。
做AB实验以及效果回归这件事情,现在自助式的平台越来越多了,等以后的这种自助式的AB平台越来越成熟的时候,根本不需要数据分析师来干这件事情。产品经理想做实验,傻瓜式的操作操作,实验之后,想看数据,仍然是傻瓜式的操作。期间不需要任何分析师参与。
探索性分析这个活本来才应该是数据分析干得活,但是我知道在目前大部分的企业数据分析却没在干这个活。探索性的分析一般都要求过硬的技术能力,或者非常熟悉业务,两者有其一才能发挥出探索性项目的价值。
最后,技术过硬的后来基本是去做算法的数据挖掘去了,因为他们发现在数据分析这个岗位因为不断的取数需求磨灭人的意志。而且这些人过的会不错,因为以前单纯做数据挖掘的人,他们大多脱离业务。但是数据分析转过去的对业务就更敏感。
业务过硬的就去做业务的产品经理了,因为本来业务能力就很强,数据意识也很强,却需要跟着业务不强、数据不强的人后面听他瞎指挥,谁能受得了。而且本身数据和业务的结合才能带来更大的价值。所以数据分析转过来的业务人一般也比正常的产品经理好一些。
所以,回到问题数据分析师的前景到底怎么样。我的看法是:数据分析本身的发展前景不怎样,但是有数据分析的经历,走算法和业务两个方向,以后发展都不会太差。
二、什么是数据分析与策略调查?
、数据分析的定义
近几年,随着大数据概念的普及,数据分析也越来越受到关注。肯定很多同学都想知道数据分析是什么,要想知道数据分析的定义,首先要从辨别一些与其相关的概念开始,如数据挖掘、统计分析、机器学习、知识发现、BI等。
在我的概念中,数据挖掘和数据分析基本是同一个概念,都是从数据中发现知识的过程,并不是说数据分析就是一些低端的描述性统计分析,数据挖掘就是用各种机器学习算法深入挖掘数据价值,其实,数据分析也要用到很多机器学习的知识,所以两者本质上没有什么区别。
统计分析是指利用统计学的知识进行分析的过程,如最大最小值、平均值、集中趋势、分布趋势、参数估计、假设检验等,主要用来观察数据特征。
机器学习是利用算法和模型识别事物间存在的潜在模式的过程,其实就是模式识别,有些既有规律是通过人眼难以观察出来的,必须通过一定的算法和一定的计算能力才能识别出来,比如,哪些用户是同一类的、哪些用户更容易流失等,这就需要相应的算法来识别,如逻辑回归、决策树等算法。
人工智能是使机器更加智能化,让机器能够像人一样工作、思考,这当然是机器发展的终极目标,如科幻电影中的各种高级机器人,当然现实中还是一些很弱很弱的人工智能,如人脸识别等,人工智能也是要用到机器学习的知识,数据是基础、算法是核心,当然还有很多其它领域的知识,如一些工程技术等。
深度学习是最近几年开始火起来的概念,主要利用多层次神经网络来训练数据,需要复杂的计算,得益于最近计算能力的大幅提升,深度学习才能大展身手,应用领域包括语音识别、人脸识别、图片识别、NLP等领域,取得很好的效果。
三、数据分析师主体?
数据分析师的主体是以采集和整理数据为主
四、数据分析师和注册数据分析师的区别?
这两个概念并没有什么差异
现在我们国家是没有注册项目数据分析师的,因为只有劳动和社会保障部才有资格颁发职业资格证书。
现在市面上有两种所谓的项目数据分析师证书:
一个是中国商业联合会数据分析专业委员会颁发《项目数据分析师证书》,一个是工业和信息化部教育与考试中心颁发《项目数据分析师职业技术证书》
五、数据分析师和行业分析师区别?
一、专业要求不同
商业分析师:
专业偏向经济、金融、工商管理、数学、统计(整体更倾向商科)
数据分析师:
专业偏向数学、统计、计算机(整体更倾向理科)
二、工作内容不同
商业分析师:
1、负责某个独立项目的信息收集、分析,提出有针对性的方案和建议;
2、就具体业务专题,构建商业分析框架,进行全维度的商业分析(如竞对信息、行业市场、上下游关系),完成分析报告面向CXO进行汇报;
3、依据国家有关方针、政策、法令,运用科学方法,及时对公司提出切实可行的战略改善方案。
(以上包括但不限于)
数据分析师:
1、负责日常数据分析及监控,针对异常情况协调资源进行跟踪和深入分析;
2、为各类业务部门(产品、运营、市场、广告)提供数据支撑;
3. 探究用户行为习惯特征,优化公司产品收益。驱动业务增长;
(以上包括但不限于)
三、掌握技能的不同
商业分析师:
一般来说,商业分析师都需要有一定的MBA背景,对市场、上下游、商业有强烈的洞察力,具备系统的资料收集、市场研究、整理能力,及良好的文字处理能力,具备较强的逻辑思维能力,敏锐的观察能力和独立分析能力。很多商业分析师是需要独立完成一份行业分析报告,站在整个行业的角度,去看待本公司、所有竞品公司、上下游的各种关系与优劣势。
需要懂得各类的策略模型与方法论:如SCP、RFM、波士顿矩阵、金字塔原理、5W2H、MECE分析、SWOT分析等等
数据分析师:
数据分析师更偏向针对某个公司产品,进行分析建模,驱动增长。
需要有较强的落地能力,与各业务部门的配合的沟通能力。
需要懂得统计学相关知识,寻找大数据中隐藏的用户行为规律,掌握基本统计模型及统计学知识:回归分析、聚类分析、时间序列、多元统计,贝叶斯等,如果在互联网研究产品的话需要了解:漏斗分析、产品转化等
以上掌握的模型,商业分析师和数据分析师都会交叉使用,只是侧重点较为不同。
总结:
a.商业分析师站的高度会比数据分析师高,因为处于战略模块,放眼的是全行业、上下游。而数据分析师更偏向落地能力,具体帮助业务某个产品得到增长;
b.商业分析师的汇报对象的都是CEO,CFO、各种O。而数据分析师的汇报对象的是业务部门和数据部门的领导;
c.企业中对战略部门的商业分析师的学历背景要求会比较高,需要有一定的咨询行业或MBA背景或强大的逻辑思维与业务拆解能力。
企业中对业务部门的数据分析师的掌握工具技能、数据处理能力要求比较高;
d.商业分析师不仅仅只是对数据进行分析,还需要做信息类的分析,如市场研究、国家政策、行业形势等;而数据分析师更偏向针对某一产品的分析,业务落地性比较强;
当然这两者边界现在也越来越模糊,很多数据分析师也需要有一定的高度去看待问题,而商业分析师也慢慢需要一定的编程能力。
e.最后讲到大家最想了解的薪资问题,一般来说商业分析师毋庸置疑会比数据分析师起薪高,商业分析师薪资对标的就是咨询行业的分析师或者咨询顾问,大家都知道咨询行业的起薪都比较高的。
当然数据分析师驱动业务增长,可获得奖金就会比较多,只要业务产生增长,加薪也会比较快。
两者来说都有很好的方向,我较为客观地讲述这两者的差异。
六、调查分析师证书有用吗?
有用的。
调查分析师证书是具备较强的调查研究与综合商务分析等能力的咨询专业人员,可以运用定性和定量调查方法,收集有关信息,进行数据处理和分析,形成报告以供客户决策参考。
七、商业分析师跟数据分析师的区别?
区别在于:
(1)专业偏向不同。
商业分析师:专业偏向经济、金融、工商管理、数学、统计(整体更倾向商科)。
数据分析师:专业偏向数学、统计、计算机(整体更倾向理科)。
(2)工作内容不同。
数据分析师日常工作内容:1. 根据时间维度产出数据报告2. 监控数据趋势3. 为业务提供数据支持4. 撰写专题性报告。
商业分析师日常工作内容:1. 商业决策2. 业务优化3. 战略调整4. 撰写商业分析报告。
八、中国调查与数据中心是什么行业?
中国综合社会调查(Chinese General Social Survey,CGSS)是我国最早的全国性、综合性、连续性学术调查项目,由中国人民大学中国调查与数据中心负责执行。
遵照国际标准,自2003年起,每年一次,对中国大陆各省市自治区10000多户家庭进行连续性横截面调查。
在CGSS年度调查的基础上,中国调查与数据中心联合全国各省市区的40多家大学及科研究机构组成了中国社会调查网络(CSSN),开创了在中国组织大规模全国性调查的新模式。
CGSS系统、全面的收集社会、社区、家庭、个人多个层次的数据,总结社会变迁的趋势,探讨具有重大科学和现实意义的议题,推动国内科学研究的开放与共享,为国际比较研究提供数据资料,充当了多学科的经济与社会数据采集平台。
中国综合社会调查(CGSS)开创了我国大型学术调查数据开放与共享之先河。CGSS数据的用户包括世界各国经济学、社会学、人口学、政治学、管理学、新闻学、心理学、劳动人事学、地理学、历史学、人类学、以及其他学科的学者、学生、及其他人员,基于CGSS数据发表学术期刊超过了1000篇。
九、代沟数据调查?
中国青年报社社会调查中心联合问卷网,对2000人进行的一项调查显示,83.7%的受访者有过被“催婚”“催子”的经历,85.5%的受访者认为自己和老家长辈存在观念冲突,观念冲突主要集中在谈恋爱、生二胎、工作等方面。
受访者中,00后占0.4%,90后占23.9%,80后占53.2%,70后占16.9%,60后占4.7%,50后占0.9%。
十、数据调查方法?
一 业务调研
数据仓库是要涵盖所有业务领域,还是各个业务领域独自建设,业务领域内的业务线也同样面临着这个问题。所以要构建大数据数据仓库,就需要了解各个业务领域、业务线的业务有什么共同点和不同点,以及各个业务线可以细分为哪几个业务模块,每个业务模块具体的业务流程又是怎样的。业务调研是否充分,将会直接决定数据仓库建设是否成功。
二 需求调研
了解业务系统的业务后不等于说就可以实施数仓建设了,还需要收集数据使用者的需求,及找分析师、运营人员、产品人员等了解他们对数据的诉求。通常需求调研分下面两种途径:
1. 根据与分析师、运营人员、产品人员的沟通获取需求。
2. 对现有报表、数据进行研究分析获取数据建设需求。
三 数据调研
前期需要做好数据探查工作,需要了解数据库类型,数据来源,全量数据情况及数据每年增长情况,更新机制;还需要了解数据是否结构化,是否清洗,是接口调用还是直接访问库,有哪些类型的数据,数据结构之怎样的。
- 热门楼盘展示》》
- 最新资讯》》