• 数据科学与大数据技术学什么?
  • 资讯类型:数据政策  /  发布时间:2024-01-03 06:38:03  /  浏览:0 次  /  

一、数据科学与大数据技术学什么?

数据科学与大数据技术涵盖了以下几个方面的学习:

1. 数据处理与存储:学习数据存储和处理的各种技术,如关系数据库、非关系数据库、数据仓库、数据挖掘等。

2. 数据分析与建模:学习统计学、机器学习、模型构建等方法来理解数据集,并产生对数据的新认知。

3. 数据可视化:学习如何使用可视化工具来展示和解释数据。

4. 大数据技术:学习Hadoop、Spark、NoSQL等大数据技术和平台,并学习如何使用这些技术高效处理海量数据。

5. 商业分析:学习如何运用数据科学和大数据技术来解决业务问题,进行商业分析和决策。

总的来说,数据科学与大数据技术的核心是通过数据分析和大数据技术来挖掘数据价值,为业务提供决策支持。

二、大数据科学与大数据技术学什么?

学习:

1. 数据处理与存储:学习数据存储和处理的各种技术,如关系数据库、非关系数据库、数据仓库、数据挖掘等。

2. 数据分析与建模:学习统计学、机器学习、模型构建等方法来理解数据集,并产生对数据的新认知。

3. 数据可视化:学习如何使用可视化工具来展示和解释数据。

4. 大数据技术:学习Hadoop、Spark、NoSQL等大数据技术和平台,并学习如何使用这些技术高效处理海量数据。

5. 商业分析:学习如何运用数据科学和大数据技术来解决业务问题,进行商业分析和决策。

总的来说,数据科学与大数据技术的核心是通过数据分析和大数据技术来挖掘数据价值,为业务提供决策支持。

三、数据科学与大数据技术专业学什么?

数据科学与大数据技术专业主要学习数理统计、数据库系统、数据挖掘、机器学习、网络安全等方面的知识,还包括大数据可视化、数据仓库管理、数据集成分析等。

这些专业涉及的技术能够帮助企业更好地掌握数据,改善业务,并有助于企业发挥更大的价值。

四、数据科学与大数据技术是学什么?

数据科学与大数据技术主要学数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践等。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。

五、数据科学与大数据技术大一学什么?

数据科学与大数据技术专业大一学习本专业的基础课程,数学类:数学分析,高等代数,专业相关类:统计学导论,大数据基础,软件类:R语言,Python,必修类:体育,思政课。大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

六、数据科学与大数据技术对学什么数学?

数据科学与大数据技术主要学习的数学有:

高等数学,微积分,数学分析,线性代数等等。

数据科学与大数据技术属于计算机类大类的一个专业,他主要是对各种数据进行采集,整理并进行分析的一门学科,他需要学习的数学知识比较多,所以你一定要打好数学基础。

七、数据科学与大数据技术考研学硕?

是学硕。

数据科学与大数据技术硕士考研的初试科目分别是三门全国统考公共课和一门专业课。公共课为外语100分,政治100分,数学150分,专业课为计算机基础综合150分。

数据科学与大数据技术主要研究计算机科学和大数据处理技术等相关的知识和技能,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)出发,对实际问题进行分析和解决。

八、数据科学与大数据技术专业怎么学?

1、主干基础课

公共基础课:包括中国近现代史纲要、思想道德与法治、马克思主义基本原理、毛泽东思想和中国特色社会主义理论体系概论、形势与政策、学术英语与科技交流、C++程序设计基础、军事理论、工程制图、微积分、线性代数与解析几何、概率论与数理统计、复变函数、大学物理、大学物理实验、人文科学领域、社会科学领域、科学技术领域等;

专业基础课:工程导论、大数据导论、数据结构、离散数学、高级语言程序设计、计算机网络、计算机安全与数据安全、计算机组成与体系结构、操作系统、数据库系统、计算机与软件工程概论、数据挖掘、算法设计与分析、大数据平台构架与技术、云计算与大数据平台、神经网络与深度学习;

选修课:程序设计课程模块(Python语言程序设计,Java程序设计,并行程序设计与分布式计算)、数据平台课程模块(计算机安全与数据安全,数据挖掘,大数据平台构架与技术)、智能计算课程模块(机器学习,算法设计与分析,人工智能,数值计算原理与方法,自然语言处理,神经网络与深度学习,计算机视觉)、数据应用课程模块(大数据应用案例与实践,IT商业模式与创业,数字孪生技术)。

2、集中实践教学环节

本专业注重实践环节和创新能力培养,突出理论课与实训课相结合的培养特色,强化工程训练,实现国际接轨,造就基础扎实、工程能力强、协作能力好的复合型大数据研究与工程人才。实践教学环节课程主要包括:军事技能、工程导论实践I、数据结构课程实训、大数据导论课程设计、工程创新训练Ⅰ、马克思主义理论与实践、高级语言程序设计实训、机器学习课程设计、数据库课程实训、操作系统课程实训、数据挖掘课程实训、毕业实习、大数据平台构架与技术课程实训、毕业设计等。

3、第二课堂

人文素质教育基本要求:学生在取得专业教学计划规定学分的同时,还应结合自己的兴趣适当参加课外人文素质教育活动,参加活动的学分累计不少于3个学分。其中新增大学体育教学团队开设课外体育课程,高年级本科生必修,72学时,1学分,纳入第二课堂人文素质教育学分。

创新能力培养基本要求:学生在取得本专业教学计划规定学分的同时,还必须参加国家创新创业训练计划、广东省创新创业训练计划、SRP(学生研究计划)、百步梯攀登计划或一定时间的各类课外创新能力培养活动(如学科竞赛、学术讲座等),参加活动的学分累计不少于4个学分。

九、大数据技术与管理主要学什么?

大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。

主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。

十、数据科学与大数据技术学的是什么,就业方向?

数据科学与大数据技术专业都学些什么?

属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

数据科学与大数据技术专业人才需求情况怎样?

根据领英发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是中国护理万网行业需求最旺盛的职位。

目前国内有30万数据人才,预计2018年,大数据人才需求将有大幅增长,高端人才如大数据科学家的缺口在14万至19万之间;懂得利用大数据做决策的分析师和经理缺口达到150万,数据分析师现在需求就很旺盛了,2年工作经验的月薪可达到8K,硕士学历的数据分析师月薪可达到12K,5年工作经验的可达到40万至60万元。

数据科学与大数据技术专业可以从事的工作有哪些?

重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类。

数据科学与大数据技术专业报考建议:

1、当下企业用人现象:一个专业集群对应一个行业热点。大数据是交叉学科,走的是“复合型”培养路线,行业内从事相关职能的人专业背景各异。大数据作为人才培养方向在探索中,如果直接从各专业人才中遴选学苗开展硕士研究生阶段的教育会更适合一些,直接开设本科阶段的教育还相对不够成熟。

2、人才培养与行业发展存在差距。由于教学大纲更新不会太及时,大数据人才7年毕业(本科四年、硕士研究生三年)后,所学恐怕落后于行业发展。

3、大数据人才的典型胜任特征:善于做需求分析、写代码;善于与人沟通,喜欢探索未知;需要根据数据推演、分析、提出解决方案,有数据思维;需要持续保持学习状态;内性格上能动能静。

4、不同办学层次的院校开设此专业,培养模式会有差异。例如,高职类院校学生由于数学基础相对薄弱,会跟多偏向于工具的使用,如数据清洗、数据存储以及数据可视化等相关工具的使用;本科院校会倾向于大数据相关基础知识全面覆盖性教学,在研究生段则会专攻某一技术领域,比如数据挖掘、数据分析、商业智能、人工智能等。

帮助说明 | 法律声明 | 关于我们 | 收费标准 | 联系我们 | 留言咨询  | 切换手机版
最新房源网 滇ICP备2021006107号-588     网站地图
本网站文章仅供交流学习,不作为商用,版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除。